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Abstract Following the idea that the global and local arrow of time has a cosmological
origin, we define an entropy in the classical and in the quantum periods of the universe evo-
lution. For the quantum period a semi-classical approach is adopted, modelling the universe
with Wheeler-De Witt equation and using WKB. By applying the self-induced decoherence
to the state of the universe it is proved that the quantum universe becomes a classical one.
This allows us to define a conditional entropy which, in our simplified model, is proportional
to 2" where y is the dumping factor associated with the interaction potential of the scalar
fields. Finally we find both Gibbs and thermodynamical entropy of the universe based in
the conditional entropy.
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1 Introduction

In the scientific literature the concept of entropy in a cosmological context is not yet com-
pletely understood. The purpose of this paper is to give an account of a possible link between
quantum processes occurring in the initial phase of the universe and the Gibbs entropy, and
to frame the obtained founded results within our theory of the arrow of time. For this purpose
we have combined several mathematical formalism that it will be presented in short but, we
hope, comprehensive version. Presently we do not see a way to simplify this procedure but
in order to keep things as simple as possible we have used the simplest cosmological model.
In this introduction we briefly review the previous results on this subject.
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1.1 The Arrow of Time

As it well known, the notion of an ever growing entropy is not directly based on the equa-
tions of fundamental physics, since they are all time-reversal invariant and the correspond-
ing dynamical evolutions are unitary. As a consequence, any future directed irreversible-like
phenomenon has a symmetric phenomenon directed to the past direction. We have called
these pairs “time-symmetric twins” [2]. In fact, since 1912 [36] it is known that for any
growing entropy evolution we can find its time-symmetric twin: a decaying entropy evolu-
tion. Then, in order to correctly define an entropy, some additional ingredients have to be
introduced. This is the reason why we have not used entropy to define the arrow of time in
our previous works [21, 23, 30, 31, 33]. On the contrary, we have based the arrow of time
on the cosmological asymmetry of the universe. Precisely, the arrow of time is defined by a
cosmological and substantial (non conventional) difference between past and future [57]. At
the cosmological level, this difference is the time-asymmetry of the generic universe (like
ours), as we have proved in [31]. The global arrow can be transferred to local contexts us-
ing the energy-momentum tensor, which also turns out to be time-asymmetric (in the case
where the dominant energy condition is satisfied). For a complete understanding of this line
of research it is recommended to read references [2] and [31]. In this way, all the usual
arrows of time can be recovered (electromagnetic, quantum, intuitive, etc.). We have even
found the irreversible thermodynamic arrow of time in [2], but other thermodynamic arrows
of time are still missing from our proposal. In this paper we will introduce in this scheme
the quantum and classical Gibbs and Conditional entropies in the early quantum universe
and in its semiclassical limit in some particular cosmological models. For this purpose we
must use the notion of decoherence.

1.2 Quantum Decoherence

Decoherence in open systems is explained by the EID in papers [55, 63—70]. But this ap-
proach has at least three problems:

— Most important, it cannot be applied to closed systems as the universe. Then the uni-
verse must be, more or less arbitrarily, divided in two parts, the proper system and the
environment (as in papers [52] and [5]).

— EID does not provide a definition of proper system and environment. W. Zurek call this
fact “the looming big problem of EID” [71]. This problem is really critical when the
system is the universe, where all its parts must be considered as essentially equivalent.

— The pointer basis is not well defined (see [26, 29]).

For all this reasons and being the universe a closed system, several authors have intro-
duced decoherence formalism for closed system [1, 9-11, 34, 35, 38, 53, 56, 59]. Three
important examples are given in [37] where it is shown a system that decoheres at high
temperature, in paper [12], where a Sinai-Young model is presented, where complexity pro-
duces decoherence in a closed triangular box, and in [39] where the decoherence appears in
a closed system, i.e. the universe, if real clock are used. Also we have developed our own
theory for decoherence of closed systems, SID (see [13, 15, 19, 24, 25, 27]) in the same basis
of the one of paper [39]. In paper [14] we show how our formalism explain the decoherence
of the Sinai-Young model above.

In the Appendix we give a short account of SID with concepts relevant for the paper.
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1.3 Decoherence in the Quantum Universe

In cosmological models, entropy can also be computed introducing a coarse-graining on the
effective action of the theory. E.g. in the context of Environment Induced Decoherence (EID)
Lombardo and Mazzitelli [52] define this coarse-graining considering a field of matter, and
integrating all modes of this field with wavelength smaller than a critical value. Then an
effective action is obtained, i.e. the equation of evolution for the reduced density matrix.
Calculating the diffusion coefficients of this equation induced decoherence can be analyzed
through the modes of wave length larger than the critical value. These results are applied
to the case of a de Sitter space-time interacting with a coupled scalar field. It is shown that
decoherence is effective as long as the critical wavelength is not shorter than the Hubble
radius. There is an extensive literature on decoherence in quantum cosmology which, at
the level of our present knowledge about quantum gravity, has led to a consistent picture
of quantum to classical transition in cosmology (see [5, 44—48, 62]). Nevertheless in this
paper we will follow a different approach, using a set of three global coarse graining, we
will find an evergrowing entropy of the universe in the quantum period in order to complete
this panorama.

1.4 Line of Thought

Our line of thought will be the following. In Sect. 2.1 we will choose, as our model, the
Robertson-Walker flat universe, and its quantum version. In Sect. 2.2 we will explain its de-
coherence process according to SID. Then in Sect. 2.2.3 we will introduce three successive
reduction of the space of observables (all of them are quite usual in the literature). Each one
of these reduction can be considered as a “coarse graining”. In this way we will introduce:
reduction I, namely to only use the van Hove observables, then reduction II, namely to use
just analytical functions, and finally reduction III where we will only retain the exponential
evolution of the universe. In Sect. 3 we will define an evergrowing conditional entropy and
in Sect. 4 the corresponding Gibbs and thermodynamical entropies. Then in Sect. 5 we will
draw our conclusions. An Appendix, reviewing the SID approach, completes the work.

2 Decoherence in a Closed Universe

If the transition from quantum to classical does not require the split of the universe into
subsystems as a necessary condition, then decoherence must be one of the processes that
explain how the universe as a whole becomes classical and reaches the thermic equilibrium
state. In this section we will apply the self-induced approach SID to a simple semi classical-
cosmological model in order to show how classically arises in this case.

2.1 The Model
Let us consider the flat Robertson-Walker universe with a metric:
ds*> =a*(n)(dn’ — dx* —dy* — dz%) (1

where 7 is the conformal time and a the scale of the universe. Let us consider a free neutral
scalar field ® and let us couple this field with the metric, with a conformal coupling (§ = é).
The total action reads S = S, + Sy + §;, and the gravitational action is:

S, = M? / dn[ —%az — V(a)i| )
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where M is the Planck mass, a = da/dn, and the potential V contains the cosmological
constant term and, eventually, the contribution of some form of classical matter. We suppose
that V is such that the universe becomes asymptotic in equilibrium for a radius of the order
of a;. We expand the field ® as:

+00 N
P(n, %) = fime ™ dk (3)

where the components of k € R? are three continuous variables. The Wheeler-De Wit equa-
tion for this model reads:

HY¥(a, ®) = (hg +hp+h)¥(a, ®) =0 4
where:

1 2 2

=——+M
hy = 030+ MV (@), ©)

1 -
hy==3 / (0 — K> f7)dk, (6)
1 >

hi = 5mza2 / fdk M

with m the mass of the scalar field, %/a the linear momentum of the field, and 9; = # We
k

can now go to the semiclassical regime using the WKB method ([40]), writing W (a, ®) as:
W(a, d) =expliM*S(a)lx (a, D) ®)

and expanding S and x as:
S=S,+M7'Si+-  x=xe+M i+ 9

To satisfy (4) at the order M?, the principal Jacobi function S(a) must satisfy the Hamilton-
Jacobi equation:

ds\’
(-) =2V(a) (10)
da
We can now define the (semi) classical time!
d—de—:I: 2V()d (11
dyn  dada a4 da

The solution of this equation is @ = = F (5, C) where C is an arbitrary integration constant.
Different values of this constant and of the £ sign give different classical solutions for
the geometry. Then, in the next order of the WKB expansion, x satisfies a Schroedinger
equation that reads:

d
,'d_X =h(n)x (12)
n

IWe will consider the conformal time n of (11) defined through the classical time as dn = %
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where
h(n) = hy+hi(n) (13)
precisely:
h(n)=—%/[—aa;2 Qa )f] (14)
where
Qa) = Q) (@) =m’d* + kK> =m’a’ + o (15)

where @ = k%. So the time dependence of the Hamiltonian comes from the function a =
a(n). Let us now consider a scale of the universe such that a = a,,, >> a;. In this region the
geometry is almost constant. Therefore, we have an adiabatic final vacuum |0) and adiabatic
creation and annihilation operators ag and a,;.z Then h = h(a,,,) reads:

he / Q,alardk (16)
We can now consider the Fock space and a basis of vectors:

ki ko, k) Z 1K) = af af ---af 10) (17)

where we have called {12} the set k .,122, e, 1¥n, where eventually n goes to infinity. The
vectors of this basis are eigenvectors of /:

h|{k}) = ol {k}) (18)
where
w= ZQ’”: Z (mzaz—l—a))l/2 (19)
kelk kelk)

For the sake of simplicity and to maintain the consistency with the notation of this paper,
we can only use the energy to label the eigenvectors as:

{k)) = | ®,,) (20)

where we have omitted the other components of the label [k] which really are necessary to
unambiguously define the vector, as we will see below. Finally in this notation, the Hamil-
tonian reads:

h =/w|ww><ww|dw 1)

2The adiabatic vacuum is an approximation, for an expanding universe with a very low expansion rate, of the
usual vacuum. With height expanding real the notion of vacuum is meaningless. This vacuum was introduce
by L. Parker in [54] based in an idea of Einstein. Since then it is consider as the all most only reliable definition
of vacuum and also the base of the notion of particle number in an expanding universe [7].

@ Springer



176 Int J Theor Phys (2010) 49: 171-186

2.2 The Three Reductions

In order to obtain the entropy of the wave function of the universe there will see that three
reductions in the space of observables are necessary: the first one will lead us to decoher-
ence, the second and third will show the decaying evolution of this wave function. Once we
have made this three reductions we will use the statistical quantum mechanics to define the
entropy of the system, which in this case is the universe.

2.2.1 Decoherence and Equilibrium in Energy Basis (Reduction I)

We introduce the first particular choice or reduction I. In this case, a generic observable
|0) € V3 reads (cf. (70) of the Appendix) where V' is the van Hove space of observables
(see Appendix):

|0):fO(w)l\llw)dw-l-//O(w,w’)l\llw,\lfw/)dwda)’ (22)

where:
[Wy) = W) (Ve (23)
(W, Vo) = W) (Ve | 24

and a generic state (p| € VSVH can be expressed as (cf. (71) of the Appendix):

(,OI=/,O(w)(‘lfwlder//p(w,w')(‘llw,‘Pw/ldwdw/ (25)

where {(V, [, (W[}, is the cobasis of {|\WV,,), |W,/)}. Then, the mean value of the observable
|O) in the state (p(¢)| reads (cf. (74) of the Appendix):

(0o = (p(1)]0) = / p(@) O (@)dw + / / p(@,0)0 (@, &)e N dwde  (26)

Taking the limit for + — oo and applying the Riemann-Lebesgue theorem, we obtain (cf.
(75) of the Appendix):

(O)pmZtETo(p(t)IO)Z/p(w)O(w)dw e2))

And this integral is equivalent to the mean value of the observable |O) in a new state (p.|:

(0| = / p(w)(Vyldw (28)

This new state (p,| is the equilibrium time-asymptotic state of the universe, which is diago-
nal in the variables w, o’ as decoherence in energy requires, in this way, quantum universe
asymptotically approaches to this state.
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2.2.2 Exponential Evolution of the Wave Function of the Universe (Reduction II)

A problem related with irreversibility is originated on the fact that the usually observed de-
caying evolutions towards equilibrium are exponential during a long period of time, whereas
quantum mechanics, even when the state is traced, precludes this kind of evolutions. Pre-
cisely there is a non exponential effect for short ties (Zeno effect) and another one for long
times (Khalfin effect). Nevertheless in many cases it is usual to just consider the exponential
law eliminating the so called Zeno and Khalfin components. Following our algebraic ap-
proach, we will prove that exponential evolutions can be obtained when we further reduce
our spaces of observables and states as follows:

Vi =V @Vt Vi =V e Vi (29)

where Vi c VR and V& c VX are subspaces endowed with particular analytical prop-
erties in the complex energy plane that we will precise below. We will call this second step
reduction Il or analytical reduction. Let us consider the following spaces:

Vi =@ @y Vi =@ o

where |V) € @, if, being |‘-I/£) the wave function evolving under the free Hamiltonian

(ie. hy = —#%), the functions (\I/(-[; | W) can be analytically continued into a region of
the lower (upper) complex half-plane. The following step consists in finding the poles of
the functions (W, | ) where {|W)} is the basis of the complete Hamiltonian (the analytical
domains must be large enough to contain these poles, which turn out to be the resolvent
poles). Precisely, the following analytical continuation for z € C and 7’ € C_ are defined:

(p|\pz, \pz’) = conty—;CONty 7 (p|"1"ws W), (30)
(Y., YV, |A) = cont,_,.cont,y (Y, Y, |A) 31)
where cont,,, , is an analytical continuation from w to z, (p|W,, W,/) is considered analytic,
and (V,, W|A) has poles (for simplicity we will just assume two simple poles at z =z} and
7' = z,, see [32], (68) and (69) and [24]) for the physical origin of the poles. Then, using

the Cauchy theorem and the residues of the analytical functions around the poles, it can be
proved that, for any A € Vi), and p € Viy the weak evolution equation for p(t) reads:

(p(1)]A4) = /0 deo(po W) (W | A) + € (9, |00 ) (81, | A)
- / 42 (Pl (G0 | A)e = 4 / d2(py120) (ol A)e! "
r r’

+/ dZ/dz/()oow’zz’)(ézz|A)ei(zfz’)r o
* r

where p, = px, 2,(z}) is the pole (that we have considered unique for simplicity, see [32]
(70)), I'(I"*) is a curve in the lower (upper) half-plane containing the corresponding pole,
and

(0ol00) = COntyxCONtyy z, (po| Ve, Vo), (33)
(Pl A) = cont,zgcont . Am* (@ — Z5) (@' — 20) (W, Yo [A), (34
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(Polepor) = conty, ;zconty 2, (Po| Ve, Wor), (35)
(q~5Z0|A) = CONt 4y % CONt Yy 2701 (0 — (Y, Wy |A), (36)
(Pol$z0) = conty, xconte .z, (Po| Vo, W), (37
(q;ozr |A) = —cont,,_, ;x contyy ., 2mi(w — ) (W, Yy |A), (38)
(Pol®zz) = conte, sconty .z, (Po| Ve, Vo), (39
(Por|A) = cONtyyy 3 CONLYy o) (Wey, Wor | A) (40)

Therefore, {|\WV,,), |$00), |¢:0), o), |¢.-)} is a basis obtained by analytical continuation,
{(Wol, (@ool, (9201, (o], (¢-)1} is the corresponding cobasis and (see [32], (73)) and:

(V| W) =8(w—)  (Duolgoo) =1,
(W, B00) = (B0 Wur) =0 (41)

If, z, =& — i% and y > 0 then z} — z, =iy and the five terms of eq. (32) can be
interpreted as follows:

(i) The first term is the decoherence-equilibrium term contained in Vi3, which is constant

in time and equal to (p.|A).

(ii) The second term contains the factor e’ and, therefore, it is the exponential decaying
term. We will call this term =7’ (p;|A)

(iii) The sum of the remaining three terms is known as “background term” which is relevant
only at the beginning (Zeno effect) and at the end (Khalfin effect) of the evolution (see
e.g., [24]). Therefore, they can be neglected in the central long exponential period.
Moreover, when t — 00, it vanishes as a linear sum of inverse powers of time.

2.2.3 The Exponential Reduction (Reduction III)

Summing up, the exponential decay, we were seeking for, is described in point (ii). If we
only want to retain this exponential behavior by neglecting the background term, we have to
introduce a further reduction, which we call reduction Il or exponential reduction. Let us
define a reduced state as

(or] = (p|T14 (42)

where the projector I, is defined as

I = (choo)-i-/0 I‘Ifw)dw> ((¢~300| +/0 (\ledw) (43)

From (41) we see that 1, is in fact a projector. Then, (p, ()| results

(p,(t)l:(p(t)ll'[+:/0 (p1W0) (W, |de + (plho0) (Goole’ 5" = (pu| + (p1 ()] (44)

and it only contains a constant and a decaying terms. Therefore, by means of the three
reductions (van Hove, analytical and exponential) embodied in projector I1, , we have ob-
tained the exponentially decaying evolution towards the decohered equilibrium state. Up to
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this point, we have used the spaces defined in (29). However, we could also have chosen the
spaces

Vo = VVSH D V‘fPf V‘;f; = VVSI; D V\fHJ» (45)
Vi =® @b Vi =0,00, (46)

In this case, we would have obtained the projector IT_ and the factor e¥’ (with y > 0),
which does not represent an exponentially decaying term, but an exponentially growing
term, corresponding to an evolution that leads to equilibrium in the past. This means that
the time-reversal invariant laws of quantum mechanics give rise to a pair of time-symmetric
twins: one including the factor e, that describes the decaying of an unstable quantum
state rowards equilibrium (a dissipative-like process), the other including the factor e?’, that
describes the growing of an unstable quantum state from equilibrium (an antidissipative-like
process). Then we have a couple of time-symmetric twin; but of course, the global grounds
of papers [2] and [31], we must just choose the first expanding twins as it is explained in
these references.

3 Conditional Entropy of the Universe

In this section we will define a “conditional entropy” which is related to the phenomenolog-
ical entropy of thermodynamics as we will see in the next section. Let us define a quantum
conditional entropy:

Se = —{p: (1) loglp, (1) p; 1) 47

where p, () is the density operator, p, is the equilibrium density operator, and (...) sym-
bolizes the trace. This entropy becomes the quantum Gibbs entropy in the particular case
px = const. Therefore, the problem of irreversibility consists in finding a growing entropy
that evolves towards a final equilibrium value. In order to face this problem, let us write (44)
with the explicit time dependence of each term:

or(t) =pe+e 7 p (48)

where p, and p; are constant operators. This is a “weak” quantum equation, since it is only
valid for the state p,(¢), completely reduced under the action of the projector IT,. In this
sense, p,(t) can be conceived as a particular coarse-grained state. Developing (47) when we
replace p, (¢) from (48) we have

Se=—{(ps + €7 p1)(loglp. + e p1] — log[p, 1) (49)

Rewriting p, + 7" p; = p,(1 +e77" p; p 1) in the first logarithm we obtain:

Se =—{(px + €7 p1)(log[p.] +1og[1 + e p1p, '] — loglp; 1) (50)

Expanding the second logarithm in Taylor polynomials and keeping up to the second order
we get:

Se=—{(ps+e " p)e " pip; ") S
and finally

Se=—e7" (pupro; ") = e (070} (52)
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The order in the operators in the first term of the r.h.s can be interchanged since () is a trace,
thus (p,p10; ") = (p1), s0

Se=—e" (p) —e " (pip; ") (53)

On the other hand (o (¢)) = (0. (t)) + {01(¢))e~"". Because the wave function is normalized,
then (p(¢)) = (p.(¢)) = 1, then from equation (48) (p;(¢)) =0 so:

h
Se=—e" " pip, ) =" / pip;'dl + 0 (g) (54)
r

where the symbols in the r.h.s. are classical states, obtained by the Wigner transformation
(see [19], [13], and [41] for details) and S is the action. Also (48) can be transformed via
the Wigner transformation [41]. The magnitude S.(¢) from (54) would be our candidate for
“conditional entropy”, that is, an entropy derived from fundamental equations by reduction
(see [16] for further details). In fact, S.(#) increases with time and, for r — oo, S.(t) — 0
and p(t) — p.. Moreover, if ¢ is the entropy production,

oc=58>0, (55)
6=5<0 (56)
This means that our fundamental entropy S, (¢) satisfies all the necessary requirements for
being an irreversible growing entropy that reaches its maximum value at equilibrium [58].
We have proved that a thermodynamic arrow of time associated to this entropy exists and it

is based on the cosmological framework which is consistent with our scheme of the arrow
of time.

4 The Gibbs and Thermodynamics Entropies

To complete the panorama in this section we deduce the relation among the conditional
entropy S, with the Gibbs entropy S¢ and the thermodynamical entropy. We can write (47)
as

Se = —(pr () log[pr(D]) + (pr (1) log[p.(D)]) (57)

If we perform a differentiation in both terms

—dS. + d{p (1) log[p.(t)]) = d{p,(t) log[ o, (1)]) (58)
As p, (1) is the equilibrium state, it can be written as p,(t) = Z~'e™#F where § = %, then
log[p, ()] =log(Z™") — BE (59)
Because Z = const then
d{p, () log[p«()]) = —Bd{p, (1) E) (60)

where (p,(¢) E) is the total energy of the system, which in the case of a generic open system
(not in the case of the universe which is a closed system) would be the increment of energy
or heat d Q interchanged between the system and the environment. Thus from (58)

1
—d{p () loglp, (D)) = -dQ +dS. (61)
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If we call —Sg(p,(t)) = (p-(¢) log[p, (¢)]) the usual Gibbs entropy, (61) is
1
dSg = 7dQ+dSC (62)

Therefore

(i) Equation (62) is the increment of ordinary Gibbs entropy in a period of time dt.

(i) The first term of (62) of the Lh.s., is %, where d Q is the heat interchanged between
the system and the environment. If the system is near equilibrium we have d S, = 0 and
we obtain the usual definition of thermodynamic entropy dSg =dS = dTQ.

(iii) The second term of (62) is the conditional entropy production in the period of time d¢

according to (55) and (56).

Going back to the case of the universe (a closed system) we have d Q = 0 and
dSq =dS, (63)

so S¢ satisfies (55) and (56). All these facts completes our demonstration.

5 Conclusions

In this work we have shown that it is possible to introduce a Gibbs entropy in a cosmolog-
ical framework in the early stages of the universe. Using a Wheeler-De Witt model, using
self induced decoherence formalism, we have found that the decohered states reaches the
equilibrium with a damped factor related with the interaction potential of the universe. The
irreversibility of this process implies that another example of the thermodynamic arrow of
time has being founded based on a cosmological framework.

Acknowledgements This paper was partially supported by grants of the CONICET and FONCYT of Ar-
gentina and the University of Buenos Aires.

Appendix A: The Self Induced Approach to Decoherence
A.1 Introduction

The SID approach relies on the general idea that the interplay between observables and
states is a fundamental element of quantum mechanics [50]. Formally the mathematically
rigorous departing point consists in the choice of an algebra of operators A as the primitive
element of the theory: the observables are the self-adjoint operators of A. In the original for-
mulation of the algebraic formalism, the algebra of observables is a C*-algebra. The GNS
theorem (Gel’fand-Naimark-Segal) proves that the traditional Hilbert space formalism is a
particular representation of this algebraic formalism; the algebra of observables is thereby
given by concrete representation as a set of self-adjoint bounded operators on a separable
Hilbert space. Nevertheless, since the C*-algebraic framework does not admit unbounded
operators, it is necessary to move to a less restrictive framework in order to adequate this
kind of operators. The self-induced approach adopts a nuclear algebra [60] as the algebra
of observables A: its elements are nuclei or kernels, that is, two variables distributions that
can be thought of as generalized matrices [28]. By means of a generalized version of the
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GNS theorem [42, 43], it can be proved that this nuclear formalism has a representation in
arigged Hilbert space: the appropriate rigging provides a mathematical rigorous foundation
to unbounded operators [6]. In fact, the nuclear spectral theorem of Gel’fand and Maurin
establishes that, under very general mathematical hypotheses (quite reasonable from a phys-
ical point of view), for every CSCO (complete set of commuting observables) of essentially
self-adjoint unbounded operators, there is a rigged Hilbert space where such a CSCO can
be given a generalized eigenvalue decomposition, meaning that a continuum of generalized
eigenvalues and eigenvectors may thereby be associated with it. In order to find the appro-
priate rigging, the nuclear algebra is used to generate two additional topologies: one of them
corresponds to a nuclear space, which is the space of generalized observables Vj; the other
corresponds to the dual of the space Vy, and it is the space V; of states.

A.2 The Formalism

After this (non-essential) mathematical introduction we will present the SID formalism.
Following [3, 50, 51] we will symbolize an observable belonging to V, by a round ket |O)
and a state belonging to Vs by a round bra (p|. The result of the action of the round bra (p|
the round ket | Q) is the mean value of the observable | Q) in the state (p|:

(0)p,=(pl0) (64)

If the basis is discrete, (O), can be computed as usual, that is, as Tr(p O). But if the basis
is continuous, Tr(p O) is not well defined; nevertheless, (p|O) can always be rigorously
defined since (p| is a linear functional belonging to Vs acting onto an operator | O) belonging
to V. In order to see how decoherence works from the new approach, let us consider the
simplest case, that is, a quantum system whose Hamiltonian has a continuous spectrum
w € [0, 00):

Hlo) = wlw) e [0,00) (65)

where w and |w) are the generalized eigenvalues and eigenvectors of H respectively. In the
simplest model, the CSCO of this system is just {H}. A generic observable |O) can be
expressed in terms of the eigenbasis {|w)(w'|} as:

|0)=//é(w,w’)|w><w/|dwdw’=//é(w,w’)|w,w’)dwdw’ (66)

where |w, ®') = |w){w'| and é(w, ') are the coordinates of the kernel |O). The Hamil-
tonian in the eigenbasis {|w, ")} reads:

IH):/wlw)(wldw://wS(w—w’)lw,w')dwdw’ (67)

Then, w8 (w — «’) must be one of the 0 (w, '), since H is one of the observables belonging
to V. Moreover, all the observables commuting with H and sharing the eigenbasis {|w, »’)}
must be:

|0):/O(a))|a))(a)|da)://O(a))5(a)—a)/)|w,a)/)da)da)/ (68)

where now O (w) supplies the values of all the components of |O) in the basis {|w; »')}.
Therefore, O(w)8(w — ') must be one of the O(w, »'). But, of course, we also need
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observables which do not commute with H and whose O(w, ') are different than
O(w)é(w — '); then, with no loss of physical generality [20] we can say that, in the general
case:

O, 0) =0 —o)+ 0w, &) (69)

where O(w, ') is a regular function whose precise mathematical properties are listed
in [18]. Therefore, a generic observable | O) reads (see [61]):

|0):/0(w)|w)dw+//O(w,w’)lw,w’)dwdw’ (70

where |0) = |w){(w| and |w, ®") = |w){w'| are the generalized eigenvectors of the observable
|0). We will call the first term of the r.h.s of (70) Og (the singular part of the observable
| 0)), and the second term of the r.h.s of (70) Oy (the regular part of the observable |0)). The
observables |O) of the form (70) define what we will call “Van Hove space”, VgH C Vo;
whose basis is {|®), |@; ®’)}. On the other hand, states are represented by linear functionals
belonging to a space V¥, which is the dual of V}¥. Therefore, a generic state (o| can be
expressed as:

(o] :/p(a))(a)|dw+//p(a),w/)(w,a)/ldwda)/ (71)

where p(w, ®') is a regular function, and p(w) and p(w, ®") satisfy the properties p > 0,

(p|I) = 1 (where |I) is the identity operator) and those listed in [18]. {(w|, (@, @'|}, the basis
of V{#, i.e. the cobasis of {|w), |w, ')}, is defined by the following relations:

(wlo) =8(w — ) (, 0|0, ") =8(w— ")é(w — ") (o', 0"y =0 (72)

Given the expressions (70) and (71) for |O) and (p| respectively, decoherence follows in

a straightforward way. According to the unitary von Neumann equation, the evolution of (p|
is given by:

(p ()] =/p(w)(wldw+f/p(w,w’)e_i(”_“’/)’(w,w’ldwdw' (73)

Therefore, the mean value of the observable |O). in the state (o ()| reads:
(0) )y = (p()|0) = / p* ()0 (w)dw + / / o (w, @)e " O (w, 0)dwdw (74)
Since p(w,w’) and O(w,w’) are regular functions, it is natural to require that
o(w, )0 (w,®) would be L; in the variables w — o’ (see ([51]) for details). Then when

we take the limit for + — oo, we can apply the Riemann-Lebesgue theorem according to
which the second term of the right hand side of the last equation vanishes. Therefore:

lim (0) ) = lim (p(1)|0) =fp(w)0(w)dw (75)

But this integral is equivalent to the expectation value of the observable O in a new state
(ol:

(0 =/p(w)(w|dw (76)
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where the off-diagonal terms have vanished. Therefore, we obtain the limit:

lim (O) ) = (0),

=00

(77)

or
W — lim p(r) = p,
t—00

To complete the subject it would be necessary to obtain the classical limit of the system.
But really this limit is not relevant for the subject of this paper so we refer the reader to
papers [24] to [14].

As this presentation shows, decoherence does not require the interaction of the system of
interest with the environment: a single closed quantum system can decohere (in the case of
this paper the whole universe). The diagonalization of the density operator does not depend
on the openness of the system, but on the continuous spectrum of the Hamiltonian system.
This means that the problem of providing a general criterion for discriminating between sys-
tem and environment vanishes in the self-induced approach. This fact leads to an additional
advantage of the new way of conceiving decoherence. As we have seen, in many cases the
einselection approach in EID requires to introduce assumptions about the observables which
will classically behave in order to decide where to place the boundary between system and
environment. The new approach, on the contrary, provides a mathematically precise defini-
tion of the observables such that the system observed by these operators decoheres, i.e. the
Van Hove observables of space V).

A.3 Decoherence Time

As a consequence of the Riemann-Lebesgue theorem, full decoherence strictly occurs when
t — oo. However, as in any exponential decaying process, there is a characteristic decaying
time that can be considered as the time at which, in practice, the decaying is approximately
completed. But in a closed system, the relaxation time and the decoherence time are the
same, since complete decoherence (i.e. relaxation in this case) takes place at the same time
than equilibrium (see [22]). In the next sections we will compute the relaxation time of
a self-induced decoherence process as the characteristic decaying time of the fluctuating
term in the expression of (O),«) of (74). In order to study and compute the relaxation
time, we will use the standard theory of analytical continuation in the scattering quantum
theory (see, e.g., [4, 8]) and its extension to the Liouville-von Neumann space (see, e.g.,
[17,32]). By means of this theory, we can compute the decoherence time in terms of the
poles corresponding to the functions involved in the fluctuating term of (O),«) (see (74)).
Let

400 pt+oo
(pr(D)|0g) = / / pw, )0, 0)e "~ dodw (78)
0 0

where |Og) and |pg) are the regular parts of |O) and |p) respectively. In this equation, we
can introduce the following change of variables:

1
A:E(w—i—a)’) v=w-—0o dodw =Jd\dv=d\dv (79)
Then,
400 2A )
(or(t)|OR) =/ dk/ p'(v, )0 (v, Me " dv (80)
0 —21
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where p'(v, A) = p(w, @), O'(v, A) = O(w, @) and the new limits of the integrals are due
to the fact that w, " > 0. Now we promote the real variable v to a complex variable Z; if
the function p’(Z, ) O’(Z, 1) has no poles in the upper Z-half-plane, we obtain

+o00
(or(1)|OR) 2/ d)»/ p'(Z, )0 (Z, Me ' dz 81)
0 C(—21,23)

where C(—2X, 2X) is any curve that goes from —2\ to 2A by the upper complex half-plane.
If the function p’(Z, 1) O’(Z, ) has, let us say, a pole at Z, = @iy in the upper half-plane,
we can, as usual, decompose C(—24, 21) = I'(=2A, 24) U Cy, where Cy, is a residue-circle
around the pole Zy and I"'(—2A, 2A) is the remaining ‘background’ curve. If, as usual, we
neglect the background, only the factor ¢i%' becomes relevant at the pole Z,, this factor
reads

.2y Loty @ Y
iRl — ol ™R t=et%t67ﬁt (82)

e

where e 7' is a dumping factor appearing in the regular fluctuating term of (O),) =
(p(t)|0). Therefore, the decoherence time can be computed as the characteristic decaying
time of the process as

tp=— (83)
14

In the first approximation,the dumping factor y in equation (83) is proportional to the
interaction Hamiltonian. With this fact in mind and in the particular cases like e.g. the
Friedrich model studied in papers [17] and [32] we obtain

h

- 84
27| Vgl? (84)

Ip

being Hiy ~ 27| Vq|? the interaction function. It is clear that, if the interaction vanishes
tp — o0. In turn, if the characteristic energy 27| Vgol? ~ V is, let us say, 1 electron-volt
(a natural energy for quantum atomic interactions, see e.g. [49]), the decoherence time is
~107 s,
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